AI meets particle technology to simplify flowability and packing density predictions

2022-08-19 18:56:36 By : Ms. Jasmine Chan

Click here to sign in with or

by Julia Reichelt, Technische Universität Kaiserslautern

Round particles and their properties are easy to describe mathematically. But the less round or spherical the shape, the harder it becomes to make predictions about their behavior. In his doctoral thesis at the Technical University of Kaiserslautern (TUK), Robert Hesse has trained a neural network to automatically determine the packing density and flowability of non-spherical particles.

Few particles in nature or in industrial production are exactly round; instead, there are a multitude of variants and shape characteristics. This is exactly what makes it so complicated to describe non-spherical particles and optimize their handling based on the description. For example, the rounder a tablet is, the less likely it is to snag on other tablets in the filling process. A flat cylindrical shape can already be optimized by slight rounding when it comes to packing density.

But how can all the properties that determine flowability and packing density be quickly recorded in order to derive decisions on the choice of a shape? What previously required simplified calculations of individual mathematical parameters or mold components can be derived automatically by a trained artificial intelligence—in this case a so-called "Deep Convolutional Neural Network"—using a 3D model.

"Using simulations in which only the shape of the particles varied, I created a comprehensive experimental data set and used it to train the neural network," reports Hesse, a research associate at the Department of Mechanical Process Engineering. "Standardized experiments with 3D-printed particles allowed the simulation methodology to be validated in the test phase—that is, to match how accurately the simulation can represent real particles."

The trained neural network now filters out salient features such as curves, corners, edges, etc. from any three-dimensional point cloud representing the entire shape. Using this information, it can analyze flowability and random packing density. "This is useful, for example, for optimizing the shape of pharmaceutical products in terms of minimum machine dimensions and package sizes," the researcher says. Explore further Controlling the concrete manufacturing process increases the strength by 30% Provided by Technische Universität Kaiserslautern Citation: AI meets particle technology to simplify flowability and packing density predictions (2022, August 17) retrieved 19 August 2022 from https://techxplore.com/news/2022-08-ai-particle-technology-flowability-density.html This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Tech Xplore in any form.

Daily science news on research developments and the latest scientific innovations

Medical research advances and health news

The most comprehensive sci-tech news coverage on the web

This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.